Remotely Sensed Rice Yield Prediction Using Multi-Temporal NDVI Data Derived from NOAA's-AVHRR
نویسندگان
چکیده
Grain-yield prediction using remotely sensed data have been intensively studied in wheat and maize, but such information is limited in rice, barley, oats and soybeans. The present study proposes a new framework for rice-yield prediction, which eliminates the influence of the technology development, fertilizer application, and management improvement and can be used for the development and implementation of provincial rice-yield predictions. The technique requires the collection of remotely sensed data over an adequate time frame and a corresponding record of the region's crop yields. Longer normalized-difference-vegetation-index (NDVI) time series are preferable to shorter ones for the purposes of rice-yield prediction because the well-contrasted seasons in a longer time series provide the opportunity to build regression models with a wide application range. A regression analysis of the yield versus the year indicated an annual gain in the rice yield of 50 to 128 kg ha(-1). Stepwise regression models for the remotely sensed rice-yield predictions have been developed for five typical rice-growing provinces in China. The prediction models for the remotely sensed rice yield indicated that the influences of the NDVIs on the rice yield were always positive. The association between the predicted and observed rice yields was highly significant without obvious outliers from 1982 to 2004. Independent validation found that the overall relative error is approximately 5.82%, and a majority of the relative errors were less than 5% in 2005 and 2006, depending on the study area. The proposed models can be used in an operational context to predict rice yields at the provincial level in China. The methodologies described in the present paper can be applied to any crop for which a sufficient time series of NDVI data and the corresponding historical yield information are available, as long as the historical yield increases significantly.
منابع مشابه
Verification Using Remotely Sensed Data
Soil moisture is an important hydrologic variable that controls various land surface processes. In spite of its importance to agriculture and drought monitoring, soil moisture information is not widely available on a regional scale. However, long-term soil moisture information is essential for agricultural drought monitoring and crop yield prediction. The hydrologic model Soil and Water Assessm...
متن کاملMonitoring Meteorological Drought in Iran Using Remote Sensing and Drought Indices
Drought is a major environmental disaster in many parts of the world. Knowledge about the timing, severity and extentof drought can aid planning and decision-making. Drought indices derived from in-situ meteorological data have coarsespatial and temporal resolutions, thus, obtaining a real-time drought condition over a large area is difficult. This studyused advanced very high resolution radiom...
متن کاملTemporal responses of NDVI to precipitation and temperature in the central Great Plains, USA
Normalized Difference Vegetation Index (NDVI) is generally recognized as a good indicator of terrestrial vegetation productivity. Understanding climatic influences, in particular precipitation and temperature, on NDVI enables prediction of productivity changes under different climatic scenarios. We examined temporal responses of remotely sensed NDVI to precipitation and temperature during a nin...
متن کاملAn analysis of drought events for central plains of Iran through an employment of NOAA-AVHRR data
Drought is a major problematic phenomenon for the mostly semi-arid country of Iran. The north centralregions of Iran (north of Esfahan and Ghom province) have suffered from severe droughts several times duringthe last three decades. The frequent occurrence of drought in these regions is due to low and inconsistentprecipitation, abnormally high temperatures, increases in surface albedo and evapo...
متن کاملUsing temporal averaging to decouple annual and nonannual information in AVHRR NDVI time series
As regularly spaced time series imagery becomes more prevalent in the remote sensing community, monitoring these data for temporal consistency will become an increasingly important problem. Long-term trends must be identified, and it must be determined if such trends correspond to true changes in reflectance characteristics of the study area (natural), or if their source is a signal collection ...
متن کامل